Рэлея распределение - definição. O que é Рэлея распределение. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Рэлея распределение - definição

Рэлея распределение
  • Функция распределения Рэлея
  • Плотность распределения Рэлея

Рэлея распределение         

распределение вероятностей случайной величины X, характеризующееся плотностью

Функция распределения:

;

EX = σ2;

DX = (4 - π)σ4/2.

Максимальное значение плотности равно 1/σ и достигается при х = σ (на рис. даны графики плотности Р. р. при различных σ). Р. р. встречается в применениях теории вероятностей, например к радиотехнике. Введено Дж. У. Рэлеем (См. Рэлей) (1880) в связи с задачей сложения гармонических колебаний со спиральными фазами.

Рис. к ст. Рэлея распределение.

Рэлея диск         

прибор для измерения силы звука; подробнее см. Диск Рэлея.

РЭЛЕЯ ДИСК         
прибор для абсолютных измерений интенсивности звука. Состоит из круглого тонкого диска, подвешенного на тонкой (обычно кварцевой) нити. Интенсивность звука определяется по углу поворота диска.

Wikipédia

Распределение Рэлея

Распределение Рэлея — это распределение вероятностей случайной величины X {\displaystyle \displaystyle X} с плотностью

f ( x ; σ ) = x σ 2 exp ( x 2 2 σ 2 ) , x 0 , σ > 0 , {\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right),x\geqslant 0,\sigma >0,}

где σ {\displaystyle \displaystyle \sigma }  — параметр масштаба. Соответствующая функция распределения имеет вид

P ( X x ) = 0 x f ( ξ ) d ξ = 1 exp ( x 2 2 σ 2 ) , x 0. {\displaystyle {\mathsf {P}}(X\leqslant x)=\int \limits _{0}^{x}f(\xi )\,d\xi =1-\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right),x\geqslant 0.}

Введено впервые в 1880 г. Джоном Уильямом Стреттом (лордом Рэлеем) в связи с задачей сложения гармонических колебаний со случайными фазами.